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Abstract
We give an invariant theoretic description of the primitive elements in
the mod —p cohomology of a finite loop space Q2" T1527+ for p odd. We
also calculate the primitive elements which are annihilated by all Steenrod
operations.

1 Introduction

In ([2]), the homology and cohomology of Q™*1§™+1 is described in terms of
Dyer-Lashof operations for m finite or infinite. In ( [10]) and ([2]), the dual of
the Dyer-Lashof algebra was calculated for p even and odd respectively and its
connection with modular invariants, namely the Dickson algebra, was known
since then by the experts. That connection was explicitly formulated by Mui in
([5]) for p = 2 and later by Kechagias for p odd in ([6]). The advantage with
modular invariants is that computations are easier in most cases because the
Adem relations are overcome.

Inspired by work of Campbell, Peterson and Selick ([1]), we give an invari-
ant theoretic description of the primitive elements in H*(Q2"*1527+1.7 /57),
PH*(Q3"+18§2m+1.7,/p7), and we use that description to calculate those primi-
tive elements which are annihilated by all Steenrod operations for p odd, The-
orem 41. That was a key and lengthy calculation in ([1]). In our approach the
advantage is that computations are easier and the disadvantage that it requires
some amount of preliminary work because we do not assume any familiarity
with the connection between the Dyer-Lashof and Dickson algebras.

Since components of Q™%15™+1 are homotopy equivalent, translation in ho-
mology is non-trivial namely, if ¢ € H.(Q™+1S™+1.7 /p7) and 2, € Hop(Q™+18™+1.7,/p7Z)
denotes the component of z then z- 27! € H,(QF+tS™+1,Z/pZ). Thus we will
be considering the base point component only.



For each non-negative integer we define a subalgebra, D[k] ® S(E;)%L*, of
the ring of invariants H*((BZ/pZ)*,Z/pZ)®* which was calculated by Mui
[4]. That subalgebra turns out to be dual to the Dyer-Lashof coalgebra R[],
[6]. We define a map j, from D[k] ® S(Ex)®"* to the quotient algebra of
monomials with monomial degree at most n using the natural decomposition
i+ H*((BZ/pZ)*Z/pZ)CL* — H*((BZ/pZ)* Z/pL)B*. Here By stands for
the Borel subgroup. Let jn((dk,0, Mk;i, Mr;0,i)Ideat) be the image of the ideal
(dk,00 Misi, Mi0,i) 1deat s then ?jn((dk,o, Mi.i, My i) 1deat) = PH* Q™S+ 1Z /pZ),

Theorem 45. Because the exterior generators of (di,0, M;i, Mi;0,i) Ideal 8T€ DOt
annihilated by all Steenrod operations, we compute Annj,((dk,0)rdeat) using
the Steenrod algebra action on Dickson generators and properties of the map
Jn In section 3.

A would like to congratulate Eddy Campbell and David Wehlau for orga-
nizing that interesting and fertile conference. Finally, I would like to thank the
referee very much for his valuable suggestions.

2 A principal ideal in the Dickson algebra

Let V¢ denote a Z/pZ-vector space with basis {ey,...,e¢} for 1 < £ < k. Let
T« be the symmetric group which acts on V* by permutations. V¥ can also
be considered as a subgroup of X+ acting by translations and we have a repre-

sentation
piWe, (VF) — Aut(VF) = GLy

V* is also an elementary abelian p-subgroup and H*(BV* Z/pZ) = E(zy1,- -+ ,2x)®
Ply1,--- ,yx] where {z1,---,zx} is a fixed basis for the dual of V*. Here
lys| = 2 = 2|z;| and B(z;) = ys, where 3(—) is the Bockstein operation. The
contragradient representation of p induces an action of Aut(V*) = GLj on the
graded algebra E(zy, -+ ,zx) ® Ply1,--- ,yk). Let Ex := E(z1,---,2x) and
Sk = P[ylw' v 1yk]'

The following theorems are well known:

Theorem 1 [3] The Dickson algebra Sg™* := D[k] =Z/pZ[dyp, - ,dkk-1] s
a polynomial algebra and degrees are |dy ;| = 2 (p* — p°).

Let By, be the Borel subgroup of GLj.

Theorem 2 [{] SP* := B[k] =Z/pZ[hy,--- ,hi] is a polynomial algebra and
degrees are |h;| = 2p"~1(p — 1).

Note that for convenience we call h; what in the literature stands for hf™.
Let i : D[k] — B[k] be the natural inclusion. This map is described by the

following relations.



Let fe-1(z) = J] (z—wu), then fo;(z) = 2 (—l)k_ixpidg_l,i and

ueve-1 =0
he= TI (ye—w)?"". Moreover, (see [6]),
uevf—l
A k—its—j
Wdkp-i)= > [ (1)

1<i1<- <5<k s=1

Both Blk] and D[k] are algebras over the Steenrod algebra, A, and its action
on generators has been given in [7].

Mui gave an invariant theoretic description of the cohomology algebra. of a
symmetric group and calculated rings of invariants involving the exterior algebra
By as well in [4].

Theorem 3 [4]1) The algebra (Ex®Sy)B* is a tensor product of the polynomial
algebra Blk| and the Z/pZ-module spanned by the set of elements consisting of
the following monomials:

M, IFL lsmd B mEa 5k, wnd( Qop &k 8, =g =T,

53515-.38m s

Tts algebra structure is determined by the following relations:
a) (Mg, L2722 =0, for 1<s<k,0<s; <s—1.
b) MS;S1,---,smL€“2(L§_1)m_1 =
S
(IR 5 Ml e hsdr_1,s,)
r=sq+1

Herel<m<k m<s<k,and0<s; < - <sp=35—1.

2) The algebra (Ey, ® Si)L* is a tensor product of the polynomial algebra
DIk] and the Z/pZ-module spanned by the set of elements consisting of the
following monomials:

Mk;sl,,,_,smL£_2; 1<m<k and0<s1 < <5, <k—1.

Its algebra structure is determined by the following relations:

0) Moy, sn LE 22 =0 for 1<m <k, and0< s; <--- <s,, <k—1.
b) Mk;sx,---,smLEcp_Z)dEI:—l1 = (_l)m(m_l)/sz;lez_2 L Mk;Sm Lg_z-
Herel<m<k,and0<s1<---<s, <k-—1.

The elements Mjs,,...,s,, above have been defined by Mui in [4] as follows:

Iy n i Iy
U e Th
P D
1 T =t Tk Y1 Ui
M, = — and Ly = .
kis1,..,8m m! Y1 S5 Yk k : :
. k—1 k—1
L i W =
i Ve



Here there are m rows of z;’s and the s;-th’s powers are omitted, where 0 <
851 < --- < 8m < k— 1 in the first determinant.

The degree of elements above are |Mis, o] = m+2((1 + -+ +p71) -
(o + - +p*m)) and |12 = 2p = (L + - +7+7Y).

The rest of this section is devoted to the connection between the dual of the
Dyer-Lashof, Dickson and the cohomology algebra of 27+152"+1 for p odd.
For details between the Dyer-Lashof and Dickson algebras please see [8].

Definition 4 Let S(Ey)B* be the subspace of (Ex ® Sy )Bx generated by:
Mo (Ls)P™2 for1<s <k,

£
_2
H M32n+1;82:—1,32¢(L52:+1)p for0<s1 <...<s < k-1,
t=1
£
[T Mey 15850 —1,8 (LSm-i-l)p_éMrS;s—l(Ls)p_z for0<s1 <...<sp<s<k
t=1

and S(Ey)CL be the subspace of (Ex ® S)SL* generated by:

Mis(Li)P™2 for0<s<k—1,

£
T Misopy,s0(Le)P 2 for 0< 81 < ... < 52 < k—1,
t=1

£
Mk]s—l(Lk)p_QHMk;SQ:_l,SQz (Lk)p"2 for0<s<s <..<syp<k
t=1

The map 7 : D[k] — B[k] defined in 1 is extended to i : D[k] ® S(E )" —
B[k] ® S(Ex)Z* by the following relations:

k—s

Lemma 5 1) Mk;sL;;_g = 5.|.1;5L§;fh3+1 hk+ E M5+t;s+t—1L§;3d5+t—1,shs+t+1---hk-

t=2
k—m

-2 -2 < —2
2) Mk;s,mLi = Mm+1;s,mL$n+1hm+2-“hk+ Z Mm+t;s,m+t-—1ng+tdm+t—1,mhm+t+l--

t=2
p—2
Mm+t;m,m+t— 1 Lm.;.z dm+t—1,s hm+t+1 e hk: .

Proof. We use induction on Mui’s formula:
—2 p=2 m ;
Mk—l;sl,...,smLk_]_hk = Mk;sl,...,smLk - 21 ("l)m-HMk;sl,...,'E,;,...,k—ldk—l,si-
O

Proposition 6 1) S(Ex)CL* is not closed under the Steenrod algebra action.
2) D[k] @ S(Ey)®L* is closed under the Steenrod algebra action.

Proof. This follows from Theorem 14 in [7]. &
Let D := [] D[k] ® S(Ex)®L* be the induced graded algebra where its
k>0

identity element is [](x1). The height of elements in D[k]® S(E;)®** is defined
3
to be k. The pair degree and height defines uniquely each element of D. The

Jhg—



unit in D[k] ® S(Ex)®* is of height k and it is not related with units with

different height. D is not of finite type but D, is. We shall note that if we let

= [] B[k]® S(E})B, then B, is not of finite type because h; appears with
£20

many different heights.
The augmentation ¢ : D —Z/pZis given by e([[Ax(x1)) = Xo.
k
Next we define a coproduct in D and B as follows (see [6] page 277):

¥ : DkK]®S(EL)S™ — > (D[t] ® S(Ey)) &) (Dlk — ] ® S(Ep—s)GLe-r)
k>t>0
Definition 7 i) 'y')(kl) Etl Rr_zt 1;
i) Y(dy;) = (E)a’f, Jdpﬁ ; ® et j;
t,5

@) y([ldfs) = 5 H( der }dl";f;) B [1d%, 5.

(t;vo, k1) %
i) (Mo L L) =T, yd A, @ M s LD +
Z(t) _le sL(p_ ) ®dk—t 0/
v) zb(Mk;s,ngp e
Z(a,;,f)dt;_t_pr_;’j(dpj;+;—z {£+f s df,;fmz'dg,iﬂ—s)@Mk ff,JLI(cp—t2) -

(de - l(dpjt+3 Moy LE — BeriosMip—i L) ® Mo, LE 2+
t,5)
2w 9%, _IMH oit—i L ® dps 05

Moreover, the following rule is applied. (ZZ@: 1 ® ap_q p) (Zth,q ® bp—t g

t Ll t g,q

tLl.gq
’U.i) "'ab(kht) = Zlgigt-—l(ih‘i)pt_l_!(p_l) ® (k—iht—i) + ngisj‘;_t(t+iht) ®

J T

vig) T”"(ka:k—ngcp_z)) 2 agick-1hi P @, (Misipesa B, 2))+
EUSiSm—k(k+iMk;k—lL(p 2)) ® Lt

(Z 2 a1,1bt,g ® Qp—t,1bjp—t,g

Here h;denotes that it is an element of B[k] i.e. of height k. Now, D is
an algebra and a coalgebra but not a Hopf algebra because its coproduct on its
unit [](x1) is not well defined although it is well defined on (z1). The same is

k

true for B. _ )

Let dj’3...dy v} be a typical element of D[k] and h'..hJ* of B[k]. We
abbreviate those elements by d* and hj’; respectively, where m = (mp, ..., mr_1)
and j = (41, ..., jx) are elements of N* the submonoid of Z*. Here Nstands for
the set of non-negative integers and Zfor the integers. Let us also give a left

)::



lexicographical ordering in those sequences and call j admissible, if j; < ji+1
forl<t<k-1.

We extend the notion of sequences above to include elements of S(Ex)
and S(E;)B*. We consider (N, +) as a sub-monoid of (Q, +) and let <N, 3 >
be the sub-monoid generated by Nand %— in @. Let <N, —%- > be the sub-monoid
which is the k-th Cartesian product of <@, % b-F

GLy

Definition 8 Let <N, 3 >* x(Z/2Z)* be the Cartesian product of the sub-
monoid <N,% >k and the group (Z/2Z)*. Let I = (iy,...,ix) ande = (e1, -, €k),
then (I,) €<N, 3 > x(Z/2Z)* will be called admissible, if 0 < 2i¢—2ip_1+€:—1
for2<t<k-1.

Note that we will be comparing sequences corresponding to elements of the
same degree.

Definition 9 If Ais a Z/pZalgebra, then we define B(A) to be the monomial
basis of A.

Thus B(D[k] ® S(Ey)°L*) and 8(B[k] ® S(Ex)B*) denote the vector space
bases of monomials in D[k] ® S(Ex)®L* and Blk] ® S(Ej)P* respectively.

Definition 10 Let Ymin and Xmax be the set functions from B(D[k]®S(Ey)L+)
(B(B[k] ® S(Ei)B*) ) to the monoid <N, 3 > x(Z/2Z)* given by

1) Xmin(dk,i) == (0: N ¢ Ry 1)2:(07 ) 0) and
—— N——

7 k—1
Xmax(dr i) = (0, ., 74,0, ..., 0)2(0, ..., 0).
- 1 1k
2) Xmin(Mrs LE ) = (35 L2 D200, 1,0, ...,0) and
"‘\s’—’ k—s s k—s—1
-2y L 1,1 1
Vinael Musle ) = (2, g 12, ...,12,1):1:(0, s 0f 1)
s k—s—1
(pP—2)y _ 1 1
3) Ko Mzl )= (0, snBomyammalies 1)2(0;:, 0, 150, .50, 1,0, ..-,0) and
—— 2 2 e e —— ——~
s m_“ 2 k—m s m—s k—m
_ 1 il
XmaJ((Mk;s,nggP 2)) = (0:---7 0:157 wny 1'2',1).’15(0, merg 0:17 O) "'70: 1)
el

and the rule Xmin(dd’ MM") = Xmin(d) + Xmin(d') + Xmin (M) + Xmin(M'). Here
d, d' €f(D[k]) and M, M’ €B(S(Ex)L*). The same holds for Xmax-

Note that the function Xmin is always admissible and #(dy ;) contains a mono-
mial with a unique admissible sequence, namely hxmin(dx,i) and a monomial with
a unique maximal sequence, namely hXmax(di,i)  The same is true for elements



Mi;s—1L272 and Mis,mLE™2. Moreover, #(d*M) might contain a number of
monomials with admissible sequences and this is the main point of investigation
because of its applications.

The function above define a natural function §*:

g* : B(D[k] ® S(Ey,)S*) — B(BJk] ® S(E;)B*) (2)

defined by 6*(d™) = hXminldE) | where Xmin(d*) = (i1, ..., 4n) and i1 = mo, iz =
Mot A1, 0 (Mo LF ™) = Myp1, L8 P hya.. by and 0% (Mo m LE™D) =
Mt 16 L8 hiny .. hg. Finally, 6*(dM) = 6(d)6* (M).

Definition 11 Let R*[k] be the vector space spanned by elements (Qr,)* where
(Z,€) = Xmin(dTM) for all dT*M in B(D[k] ® S(Ep)CLx).

We define the degree of (Q,c)* or by abuse of notation of the sequence (I,¢2)
such that the maps 6%, xmin and Xmax are degree preserving maps.

Definition 12 Let I = (iy,...,ix) and e = (e1, ..., €x), then the degree of (Qr,e)*

k k
or (I,e) is 2(p—1) (Eitp "1) - (Zetpt_l).
t=1 i=1
Next we define an order on <N, 3 >* x(Z/2Z)* which is compatible with
the order defined in<N, 3 >*=<N, 1 >* x(q, ..., 0).

Definition 13 Let (1, ¢) be a typical element of <N, 1 >* x(Z/2Z)* and we call
It = (i, ..., 3%) and &r = (et, ..., ex) fort =1,....,k. We define (I,¢) > EFel), f
2p—1)ie —er — | Ly 60-1] > 20p — 1)is — & — |I}_,, €;_1| for the smallest t.

Let the vector space isomorphism @, : D[k] ® S(Ex)SL* — R*[k] be given
by
Qp(di' M) = > A, (1,)(@r)"

(I,E) 2Xmin (dLnM)

Here a,,(s.) is the coefficient of A! in #(d{*M) and all sequences (I,e) are
admissible.

Remark 14 The map above is upper triangular with one along the main diag-
onal and it has been studied along with its inverse in [8] Theorem 45.

Example 15 Let us consider ®y(ds 0d34d5 ) for p = 3.

Using MAPLE we get #(d}3d3,) = 2h3 h1h}? + RShZTAS + 2hi5hiBHS +
2h1%R3BRL2 + K3ORZTRT 4 RZTRIORT + 2h3RIBR10 + 2h30n21HG + 2K36R36RS +
2h38h32 R + RITh33hG + 2h3Eh30RS + h18R37R3 + RIShI® + RISAL® + KT2R3E +
hT2h3% +h3Ph§S 4 hEE RS0+ h2*h32+ RPhi3 + h3Ohi6 + h3LhLS 1+ RIZHIS 4 ORORI3RIS 1
2HIPRIE + IR + AATHISA 4 WIS KIS+ A%+ DR4ROR L onInond ¢
2h$3h3h30 +h3O RT3 ha+ hPREh§+ h3RI3h34+ hI2 ARG+ RS2 h3A2T + SR12hE4 + h3
h3h3* + h3RICRTT + R3ThIAL0 + h3Ondn$E + hAShIOh, + 2RS3RIZRE + KT2R3RTT +
h3h3h37 + RSP RIRZT + hA2h§3h + hRS3RL0 + ROAISRY. The admissible sequences
fOT‘ @k(ds,odé?ldg,z) are: h1,13,17, h1,16,167 2h10,13,16 and h10’10’17. Thus
Dr(ds 00543 5) = (Q1,13,17)" + (Qu.16,16)* + 2(Q10,13,16)" + (Q10,10,17)*-



Of course, R*[k] inherits a Steenrod algebra structure from the isomorphism

above (see [6]).
Let k = [21] and € = (e1, ..., &), then S(Ej)“"* is spanned by at most &
monomials:

k:sl S

Mo L2y ERipe-e g 71772 it s odd

k:s; k5253 ksk 151:

A { ME ]Lp_ M,[c o Sk]Lp'r") if k is even

Definition 16 Let . N [m] .t 1+ek} 53
mo+ .. Mk—1 —_, 1 18 even

2(m.e) = me + ... + M- 1+e1+[—ﬁziﬂ} + .. +[w] if k is odd i
we call the monomial degree of d* M* to be the non-negative integer y,(m, ).

Let (D[k] ® S(Ex)CL*)_ be the vector space spanned by all monomials with
monomial degree n in D[k] ® S(Ex)CLx.

Let R:[k] be the vector space spanned by elements (Qr,)* where (I,€) =
Xrmin (A7 ME) for all &P M in B(D[k] ® S(Ey)L*),.

Since we are considering homogeneous elements the monomial degree can be
extended to polynomial degree as well.

Lemma 17 (Qr)* € Ri[k] if and only if (I,€) is admissible and ix < n.

Remark 18 1) We should note that if m > m’ and |d*M®| = |d M<'|, then
the polynomial degree of dg" M€ is greater of that of d* M.

2) We also note that if @ (Qr)* = >, al, [(d*M*), then the poly-
ISXmin(d;:)

nomial degree of df*M* is greater or equal than of ik.

We shall make (D[k]®S(Ex)5*),, a quotient subalgebra of D[k]®S(Ey) %+
and write its elements for the natural images for convenience.
Let the epimorphism 7, : R*[k] — R}, [k| be given by

(Qr)*, if (Qr)* € Ry [K]
T (Q1)* { ! 0, oth;rwme

Lemma 19 The epimorphism m, : R*[k] — Rj[k| is a map of algebras.
Proof. We must show m,((Q1)*(Qs)*) = mn(Q1)*mn(Q)*. But

(@)™ Q)" if ik, Jr <
0, otherwise

(@) (@) = {
On the other hand, m,((Q1)*(QJ)*) = T®k(®7 (Qr)* - @5'(Q,)*). Using
remark 18 2), we get that both sides are equal. ®

Definition 20 Let j, : (D[k] ® S(Ex)%%*) — (D[k] ® S(Ex)%*)n be the epi-
morphism dgﬂned by

Jnl(d M*) = O (T (2 (d M7)))



The map jy, is well defined because of remarks 14 and 18 and also an algebra
epimorphism.

Example 21 Let us continue on ezample 15 for n = 16. We recall that
P (d3,0d33d35) = (Q1,13,17)* + (Q1,16,16)" + 2(Q10,13,16)" + (Q10,10,17)*. Since
n =16, mn(Dx(ds,0d33d52)) = (Q1,16,16)" + 2(Q10,13,16)". Because 2n10:13.16 4
an element of i((9*)~1h116:16), (I'k'l(ﬂn(tbk(d&()d%?ldgg))) = d3,0d}3,.

Definition 22 Let (di o, Mk, Mi.0,:) 1deat Stand for the ideal of DIk)®S(Ey)CLx
generated by {dk,0, Mi;i, Mis0,i} and jn((di,0, Misis Mi0.4)1deat) its image in
(DK]® S (Ex)CL*) . Respectively, j.((dx0)1dear) Stands for the image of the
principal ideal (dk,U)Ideal n D[k]n

Remark 23 1) Because D is of finite type,
[1(dk,0. Misi, Mis0,) 1deat = EP(dr,0, Misi, Miyo0,:) 1dear -
k 2

2) It is immediate from the definition of the coproduct in D that @ (dx,0, M1, Mi:0,:) Ideal
k

and @(dr,0)1deat are closed under the same coproduct.
k

Next we define a vector space which turns out to be isomorphic to the
primitive elements of the mod —p cohomology of Q?*t1527+1 je  the dual
of the generators of H,(Q?"+1527+1). We recall that the natural product
in H*(Q*"*15%7+1) is not related with the product of the Dickson algebra.
Moreover, the coproduct in D is not related with the Pontryagin product in
H, (927”152”""1) either.

Definition 24 Let C(n,p) be the Z/pZ-vector space given by @jn((dr.0, M., M;0,5) 1deal) -
%

We are interested in finding all elements in C(n, p) which are annihilated by
all Steenrod operations. Those elements shall be computed in the next section.

Definition 25 Let (dk,0)rdear be the principal ideal in D[k and j,((dk,0)1deat)
its image in D(k],. Let Ann(jn(di0)1deat) Stand for the space generated by all
monomials in jn(dy,0)rdeat Which are annihilated by all Steenrod operations.

We close this section by examining the map jy,, because of its applications
in the next section.

Lemma 26 Let d™ = dyg---dry such that m; = Omodp*—* for 1 <t < i and
m; > p*~. Let n = Y(m). Then In(d™dp 1) = dmdgzjl/d}';;ﬂ + (terms of
polynomial degree less than n + 3 — pF—*).

Proof. Let I = xmin(d™dk k—1), then iz = n + 1. We are interested in

i k—i _T

admissible sequences in #(d™djx—1) = [T#(d% , )#E(dk,k_l} such that they
t=0

have polynomial degree less than n+1. Because of the restriction on the degree,



we must consider a summand of at least one element 1(d;’; 4 ) in 2(d™dk,x—1) such
that it is not divisible by hj. That summand will be a p-th power. because of

formula 1. There are two distinct choices: 1) #(dk,x—1) and 2) z(d’,; s ") for t < i.
1) In order for the corresponding sequence to be admissible, we should consider

hY " in #(dg,x—1) for t < i. The smallest one will be the one with ¢ = ¢ namely:

T — i A 0y 0,0, 0pss 1)
N

k—i
Moreover, (6%)~1hl" =d™ z 1/dp .For I' = I-1I 41+(0, .. P 0.0
—_——
k—i—t

it is not admissible. One more case where the polynomial degree is n is described

k . -
as follows: let [] h%P° be a summand in i(df,’;:ct ) with a5, =0 for £ > 59 > 1

s=1
and hﬁ:_so the corresponding summand from dj, x—1. Let I’ be the correspond-

ing sequence, then !’ is divisible by k2" for all s except for so. It follows that
I’ is not a,dlmssxble

2) Let H h2s?" be a summand in z(dp ot ) and the corresponding sequence

I’ Because at least hi " has been divided from B e ) 1y S Bt 1~
(= - 1).

Up to this point, we have considered the composition m, (®x(d™dk,k—1)) and
we should take care of ®;'. It is obvious from case 1) and 2) above that the

only possible admissible sequences depending on m are of the form
I’(i} =l —Izpa1+ (0, vy O,pk_i+t,0, ., 0)
N —
k—i+t
Here ¢ > 0 and I(0) is the smallest one. But & (6" (k! (?)) and ®¢(d™dkx—1)

contams Q I ) with the same coefficient for ¢ > 0. Finally, j,(d™dk k—1) =
dmdp i1 L/ a’" " + (other terms of degree less than n+3 —p*~%). m

Corollary 27 Let d™ = asi""(‘]’az:‘1 such that my = 0modpF~*+ for1 <t <i
and m; = ap"“'H +pF- ""H'lb for 1<a<p-landb>0. Letn=>3_(m). Then
Gn(d™ d: )= (71’“1:;[“1"1 7 /dap - + (terms of degree less than n+3— i

Example 28 1) Let p = 3 and n = 22. We recall that jn = @} (mn(2%))-
Then @ (7, (P (ds, od21 d35))) =
2) Let n = 19, then &3 (mn (P (ds, od3 1d3,2))) = d3%-

Remark 29 Campbell, Peterson and Selick provided a convenient method for
calculating jy, for relatively small n, [1].

10
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3 The Steenrod algebra action and Ann(j,(dx ) rdear)

We recall some well known facts about the Steenrod algebra action on generators
of H*((BZ/pZ)*,Z/pZ)C**, please see [7] for details.

i1, fj=1—-1

Theorem 30 [7]a) PP’ (dy;) ={ —didip, ifj=k—1
0, otherwise
—L—(P*(d — hp P™(dg—
b) P (h) = { dk"laﬂ( 0(, ]:']’”0()3’[71) i@( k-10)) . Here C(n) stands for all

sequences consisting of non-negative integers c = [cg, ..., Cx—1] such that
= k—1—t
= Xo: c(p" " +...+p )

C) ﬁMk;oL£_2 = dk,O-
d) BMi0,s L% = =M, s LE™2, for s > 0.
e) PP"" Mis L2 = M5 1L272, for s > 0.

It is immediate from the theorem above that:

Proposition 31 1) No-element of S(Ey)®L* is annihilated by all Steenrod op-
erations.

2) For any monomial M in S(Ey)L* there exists a Steenrod operation P'
such that M and P'M have the same polynomial degree.

In order to discuss the effect of the Steenrod algebra action on polynomial
degrees we examine the action of P? on the Dickson algebra generators.

Lemma 32 Let the Peterson monomial f = yﬁk - -yf_:lyf = --y1. The Steen-

k .

rod algebra action on f, PIf is not identically zero if and only if ¢ = 3 a;pt
0,ixt

for0 < a; < 1. In that case,

B e
PIf = zp (1+ai(p-1)) f (1+ai-1(p—1))
IE-Ity 1;[y

Proposition 33 Let the polynomials L = sign(o)yL 'E;)l...y‘,(l) and Ly s =
o€,

5 sz'gn(a)yil{ck)...yg:_.l_ljyﬁz;;...ya(l) which are the expand of the following

gEL

determinants:
N T Yk i Yk
Li=| D and Ly =| :
k—1 k=1 K k
U yi y? yi

11



In the last determinant the row ( y{’t yzt ) is deleted.

k=1
1) PAL,. # 0 if and only if g = . p* or 0 and in that case and the action is
z

gien as follows:

) k t+1 1—1
PiLy= } sign(o)yb - - VousnyUoq Vo) = Lit

oED

2) PiLy: # 0 if and only if

k .
Sptfors>t+1 g
8
t—1 S eng
i [
fi= %:pz forl1>0 s
Eoot=1

Spi+Spt fors>t+1andl >0
s l

qnd in that case

t+1 t—1

3+ D
+1)¥ ) Yo (1)

) k41 1 et
U%;: 8ign(0) gy - - Vo(s) Yo(s—1) Yo
k
) K t+1 t e g )
Pilyy = 3 sign(@)Yg ) Yorn¥o: - VolsnYouma) Vo)

oET
S+ t+1 L4y pl-l

) k+1 1,81 t
Ug SZQH(G')'U{:-(R:) s ‘y]:'(s y§(5—1)---yi(t+1)y§(z)- : -yi(a+1)ya(z»>a)"-ycr(1)
k
Proof. We prove 1) and the proof for 2) is identical. Let g and ¢’ as in
lemma 32 such that ¢ = ¢’ + p**° + p* with s > 1. Then
Pt
; iy tts, Yoy Yo(l) i1 t+1
Pf = % sign(@)PY P (S ey
e Yo+2)¥Yei+1)

There exists a ¢’ such that o/ = (¢ + 1,t + 2)o and sign(c’) = —sign(c). Thus
Pif=0. m

Corollary 34 1) Let g = f?' and f = L, Ly, then Pig = (P f)7".
2) Let g = Ly s and g < p®, then Plg # 0 if and only if ¢ = p*~1 + ... + 9t
forl>0.

k=2 -1
Lemma 35 ] (%) = 5 (37D -+ (o) (o) -+ ().

3 a; ag—z—1 Qp—i—1/ \Q—i—2 Tp—(k—1t)
k—1 .
Theorem 36 1) Let ¢ = 3. a;p** such thatp—1 > a; > a;—1 > a1 = 0.
T
Then .
! = 3 Lo
qui,u =dzl’0(_1)ak—1 TI ( a; )dz’z(az ai-1)

t \Gi-1

12



Otherwise, quk g =

2) Let ¢ = Zaz-p”‘l > 0 such that p—1 > a; > a;j_; > ax > 0 and
S
a;+12>ai1 >2a;>a;_1>0. Then

! _ ! _1\ak—1 k=1 a; Clt‘f‘l t—1 a; k=1 plgai—ai_l)
qui’t B a?;’t{ 1) (tI-|_-I1 ai—1 Qt—1 1:‘[ ai—1 ];Idk’z

Here a;_; = 0. Otherwise, qu’;io =0.
Remark 37 Please note that the case a; =0 and as—1 = 1 is allowed.

Proof. The idea of the proof has been used in [9]. We use induction and
the Cartan formula on the identity:

L ] 13
d’)‘;,tLJI: = Li,t (3)

For convenience we shall use the notation (ax_1, ..., a) f = Pok-1P" T et I
in the sequel of the proof.

1) We prove the claimed formula for (1, ..., l)d}':O using formula 3, proposition
33 1) and corollary 34 1). Using induction hypothesis, formula 3 and lemma 35
the formula follows.

2) If a;—; = 0, then the proof is identical as in 1). If a; = 0 and az—; > 0,
then we use formula 3, proposition 33 1) and 2) and corollary 34. Let a:a;—; >
0. We prove the claimed formula for the following sequences using formula 3,
proposition 33 and corollary 34:

Lol |, 1,.,12,.,2],]1,.,1,2,...,2,1...
N e e N N’ hv_/\—,__/
k—t t—s k—t t—s k—t t—s

Using induction hypothesis, formula 3 and lemma 35 the formula follows. m
The following Theorem is an application of last Theorem and the Cartan
formula.

L —i4

Theorem 38 Let d = d; d‘;

J 5T

b a a b—c k—itl (o b —il

20(_1)6(6)( ac)dk%dzpk t t)p F(c .
forq~b(pk 1‘H+ -i-pk 1), b < 2a.

Pia={ (C1p(E)dd_ ™ forq = it p<a

"forl < a < p—1. Then P:

o) ) ( )dcp;: ;Hd;p: ""‘P ke 1_t(dzp d(a—c)Pk H")
L fO?" g= bpk 1+ Az cp2k 1—1+I, b, c S i

Proof. We use Theorem 30 and Cartan formula. m

13



Corollary 39 Let d = dd%  for1<a<p—1 andn=a(p' +p*~**).
Then jn(P4d) is non-zero for a > 1, ¢ = b(p*~1+ + . + p*~*+) and b = 2.
Moreover, j,(P%d) =0 for all ¢ > 0 if and only if a = 1.

Example 40 Let p = 3, n = 2(1+p*%) and d = d2,,d%, . Let g = 2p*~1,

then P4d = d2 dk k— 1dii;k_{+d}2c,od§ik—_1i _4d‘!2c,odk,k—ld£:ci_-&1dii;ﬂ and j,(P%d) =
2 od?,
k,i—1

Theorem 41 Let m = (mo,...,Mi—1) and d™ Hd,’c':; such that > m; =n.
1) Let mg = n, then dZO S Ann(jn(dk O)Ideal)
2) Let mg = ). mgstpst <nandm; =0 forl <i < k—1. then
0<£<1(0)
0 € Ann(jn(dr,0)1deat) if and only if mo +p*o~! < n < mp+p%.
3) Let mg < n and 3 such that m; # 0mod p, then d™ & Ann(jn(dk,0)1deal)-
4{)Letmo= 3 moe,p with [ mos #0. d™ € Ann(jn(dr,0)1deat)
0<t<!(0) 0<t<1(0)
dmo .~alfe'-7$t M0, s P

if and only if mgs, =1 for allt and d™ =[] dig d.;
o<t<l(0) A

k—ig, +s¢

Proof. 1) It follows from Theorem 30 that Pﬂ(d}:}o) € (d}c‘,o)ideag. Moreover,
if @ > 0 and P*(d},) # 0, then its polynomial degree is greater than n. Thus
di o € Ann(jn(ds, O)Ideal)

2} This case is similar to the previous one taking on to accou.nt bino-
mial coefficients as well. If n is outside the given range, then par*” d.”"0 =
mg Sodm df y—y for a = p™.

3) Let i be minimal with this property, then J e mi,0d ™ dk,i—1/dk,i-

4) Let u(m;) such that m; = Omod p*(™) and m; 2 Omod p“("‘*)“ Let
T(m,min) = {ili > 0,4 — 1 + p(m;) = min{t — 1 + p(me)[t > O}}.

Let tg € T(m,min) and tg — 1 + p(my,) < k — 14 p(mp), then using Theorem
30 we get jn(Ppto_lﬂ(mtO)dm) #0.
Let top = max T(m, min) and tg—1+p(my,) > k—1+pu(mo), then using Theorem

pk—to+nr(mo) k—tg+u(mg)

30 and corollary 27 we get jn(PPk H'Mmmdm) —my y(mo)dmdk to—1 Fii8 2o
Here we also use k — tg + u(mg) < p(my,)-
Let tg = maxT(m,min) and g — 1 + p(mg,) = k — 1 + p(mop), then us-

ing Theorem 30 and corollary 27 we get jn(PPk_1+P(m°)dm) = (Mug,u(mey) —
pRmtotalmey)  k—totu(my,)
M0 pu(mo) )™ d, ch5=i1 d 1,
k— t0+u(mt1 ) k— t0+u(m 1)
ng,p(m%)dmdk’%_l /al,c o . The last equation is

to€T(m,min)—{to}
Zero only if 'm’to.#(mto) = T, u(mo) and T(m, mm) = {tg}.
—tg+r(mo)

u(mqg) k
Thus if ™ € Ann(jn(dk,0) 1deat), then d™ is divisible by dj, o*™” ’ g

Following the same method for the next non-zero coefficient, mgs,, we de-
duce that if d™ € Ann(jn(dk,0)1deat), then the following hypothesis holds:
i) mo = mp + M0sy P + Mg, pu(me) P

14



ii) 't such that m; = 0mod p#(™t)—t for 1 < t < u(my,)—1for all 7 and my, =
Mg, p(mey ) mod p#{™0) | m; = 0mod p(™0) | # tp and Mg, u(meg) = 700, (mo)-
iii) 3'%; such that m; = Omodpt(™w)*t for 1 < ¢t < s, — 1 for all i # £,
My, — mto’#(mm)p“(mto) = Omodp“(m*n )+t$ my, = mt]_,stl mOdPPStl , My =
Omodp®a, ¢ # to, t1, My, — mto,ﬂ(mto)pﬂ(m‘*o) = Omod p*t1 and Mty s, = TNO,s, -
Finally, applying the same procedure for all non-zero coeficients of myg in its
p-adic expansion we prove that: if d™ € Ann(j, (@k,0) Ideat), then d™ is divisible

Mo, g, Pt mo,gtpk_i’""s‘ .
by dk,g : dkﬂ;ﬂ for all mp,s, 1 Tg.
For the other direction we use induction on the number of non-zero coeff-

cients of mg, Cartan formula, and corollary 39. m

Example 42 1) Letn =1. Then
51((d,0, Misi, Miso,i) 1deat) = {di,0, Misi, Miso,e) 0 < i < k—11<t < k—1}
and Ann(j1(dx,0)1deat) = {dr,0}-

2) Let n = 2. Then
32((dk,0, Misi, Miso,i) 1deat) = { k08, s, di,s Misi, die,s M0, M Mi 4, A 0 My 1]
0<4,8,9<k—1,1<t<k-1} and Ann(ja(d,0)1deat) = {d2 . }.

3) Letn = p+1. Then jn((dko)1deat) = {di%dp, .dit| 0 <a; <p,0<
ap, zat < n} and Ann(jn(dk,[))fdcal) = {d}:’o, d:.j;’o: dk,od];’k_l}-

4 H.(Qm™T18§™+1.7 /p7) and Dyer-Lashof operations

We recall the description of H,(Q™+1S™+1,Z /pZ) in terms of lower Dyer-Lashof
operations from [2] and [1].

Definition 43 Let R, =< Q(1,¢)|(I,¢) €<N, 1 >* x(Z/2Z)* with i, < n and
admissible as in definition 8 for k > 0 >.Let QoR, =< Q(1,e) € Rp with i3 =0
=

H (Qm+1 5™ 1. 7,/p7) is the free commutative graded algebra on R, /QoR,..
We recall that R,,/QoR,, is an opposite Steenrod algebra A, module through
Nishida relations. Let consider all elements in R,, with fixed length k:

Rn[k] =< Q(1,e) € Rn,(I,€) €< N,% >k x(Z2/22)F >

and QoRn[k] =< Q(1,¢) € Ralk] N QoRx, (I,€) >. Those are A, coalgebras.
Dualizing, we get a Steenrod algebra module isomorphism:

PH* Q™1™ 7 /p7) = @ (Rnlk]/QoRn[K])"

Next we recall the relation between R[k] and modular invariants. First we
note that the hom dual of R[k], R[k]", coincides with what we defined in 11.

Theorem 44 [6] R[k]* = D[k] ® S(Ex)L* as algebras over the Steenrod alge-
bra.
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Using Theorem 1.7 in [1], we deduce the following Theorem.

Theorem 45 1) (R[k]/QQR[k])* = ((dk,():Mk;i;Mk;O,i)Ideal}-
2) PH*(QZ1527+1.Z /pZ) = jn((dk,00 Misis Miy0,i) 1deat)-

We quote Campbell, Peterson and Selick’s Theorem 2.5 from [1].

Theorem 46 [1] Ann(PH*(Q3"1S52"+1,Z/p7Z)) is generated by {(Qr)*| I ad-
missible and satisfies is + pt < n = 2is + |Is—1| = 0modp**? for allt > 0 and
1<s<k}.

Our Theorem 41 describes the isomorphic image of Ann(PH*(Q3" 1 S2"+1,Z /pZ))
in terms of Dickson invariants. It is not obvious how to decompose an ele-
ment of the hom-dual basis of R[k]* with respect to the monomial basis of
D[k] ® S(Ex)CL+. We describe an algorithm regarding this passage in [8].
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